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Smoothness of a molecular propertysachieved by diagonalization of the matrix of the corresponding property
operatorsis a convenient and frequently used criterion for the construction of an adiabatic to diabatic state
transformation. The choice of molecular property has been a matter of considerable discussion. When conical
intersections are present, the performance of this approach near that intersection is key since the derivative
coupling in the adiabatic basis is singular there. Thus it is desirable to know, a priori, whether use of a
particular property will remove the singularity. Here it is shown that diagonalizing the matrix ofanysymmetric
(real-valued hermitian) electronic property operator, satisfying only certain limited restrictions, generates a
transformation that removes all of the singularity of the derivative coupling at the conical intersection. The
result is illustrated by considering the dipole moment operator near a point on the 11A′-21A′ seam of conical
intersection in HeH2.

I. Introduction

At a conical intersection, the derivative couplingf τ
IJ(R) ≡

〈ΨI(r ; R)|(∂/∂τ)ΨJ(r ; R)〉r in the adiabatic basis,ΨI(r ; R), is
singular. Here [He(r ; R) - EI(R)]ΨI(r ; R) ) 0, He(r ; R) is
the nonrelativistic electronic Hamiltonian,r (R) are the elec-
tronic (nuclear) coordinates, andτ is an internal nuclear
coordinate discussed further below. In order to solve the nuclear
Schrödinger equation quantum mechanically, it is desirable to
remove this singularity by transforming to a diabatic basis,
ΨI

d(r ; R), for which all f τ′
IJ,d(R) ) 〈ΨI

d(r ; R)|(∂/∂τ′)ΨJ
d(r ; R)〉r

are small. For this reason interest in the construction of diabatic
states has been, and continues to be, intense.1-3

Near a conical intersection, the region of interest in this work,
the two-state approximation is appropriate and the transforma-
tion to diabatic states is given by

where the prescription forΦ(R) is required. The historical lack
of efficient algorithms for the evaluation of the derivative
coupling (although this is certainly no longer the case4) has
stimulated considerable interest in methods to determineΦ(R)
that avoid evaluation of the derivative couplings.2,3,5-7 Of
concern here is the readily implemented and hence popular class
of methods that requires smoothness of a molecular property.8-11

Any of a variety of molecular properties, including a component
of the electronic, dipole moment,9,10 quadrapole moment,10 or
orbital angular momentum10,12 operators are used for the
construction of diabatic bases. Very recently a comparative
study of the global performance of several of these approaches
has been reported11 for the 11A′ and 21A′ states of H2O, which
exhibit two seams of conical intersection.† Supported by NSF Grant CHE 97-00771.

(ΨI
d(r ; R)

ΨJ
d(r ; R) ) ) (cosΦ(R) sin Φ(R)

-sin Φ(R) cosΦ(R) )(ΨI(r ; R)

ΨJ(r ; R) ) (1)
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As the viability of the molecular properties approach depends
on its ability to remove the singularity in the derivative coupling
at the conical intersection, it is highly desirable to know, a priori,
whether use of a particular property accomplishes this. Al-
though formal discussions of the molecular property based
adiabatic to diabatic state transformation exist,8 an analysis of
the effect on the singularity at a general, that is, where symmetry
plays no role, conical intersection is lacking. This work reports
a rigorous analysis of this question based on a perturbative
treatment of a general conical intersection13 that extended a
previous work of Mead.14 A quite surprising result is obtained.
It is shown that in the immediate vicinity of a general conical
intersection of statesI andJ the transformation determined by
the standard property based definition ofΦ(R) ) ΦA(R)

where

andAe(r ) is a symmetric operator, differs, by a readily computed
constant, from the perturbatively determined transformation.
Since the later transformation rigorously removes all of the
singularity in thef τ

IJ(R),13 so must the transformation deter-
mined byΦA.

Section II presents the analysis of transformation 1 withΦ(R)
) ΦA(R) near a conical intersection. The practical utility of
the formal treatment is illustrated using the components of the
dipole moment operator near a point of the 11A′-21A′ seam of
conical intersection in HeH2. These conical intersections are
particularly relevant since aΦ(R) based exclusively onf τ

IJ(R)
has recently been discussed for this system.15 Section III
summarizes and concludes.

II. Theory and Results

The ΨI(r ; R) are expanded in a basis

where thecI(R) satisfy

In the numerical treatment below theψR will be configuration
state functions (CSFs)16 constructed from molecular orbitals
obtained from a state-averaged multiconfigurational self-
consistent field procedure.4

A. Wave Functions near a Conical Intersection. Near a
point of conical intersection,Rx, of statesI andJ, it is convenient
to replace the CSF basis with an alternative basis,ψ̃I(r ; R),
analogous to the crude adiabatic basis of Longuet-Higgins17

so that

ê and ¥ can be expanded in a power series in displacements
δR whereR ) Rx + δR as follows

where13

øK
I,0(Rx) ) δK,I, and

θ is the polar angle of a generalized cylindrical coordinate
system,13 that is,x ) F cosθ andy ) F sin θ, with origin Rx

and axesx̂, ŷ, andzi, i ) 3 - Nint, whereNint is the number
of internal coordinates. Herex̂ ) gIJ(Rx)/||gIJ(Rx)||, ŷ )
hIJ(Rx)⊥/||hIJ(Rx)⊥||, hIJ(Rx)⊥ ) hIJ(Rx) - (hIJ(Rx)†‚x̂)x̂

and thezi are only required to be in the orthogonal complement
of thex-y or g-h plane. In eqs 8a and 8b,kw ) kIJ(Rx)†‚ŵ, for
k ) g, h andw ) x, y.

The salient feature of this perturbative analysis concerns the
derivative coupling in the diabatic basis

From first-order perturbation theoryΦ(R) ) Φ(p1)(R) )
-λ(θ)/2. It can be shown13 that (1/F)(∂/∂θ)Φ(p1)(R) exactly
cancels the only singular part of the deriVatiVe coupling, (1/F)
f θ

IJ(R), at Rx.13,18 The remaining components of the derivative
coupling, f F

IJ and f IJ
zi, which are necessarily finite atRx, turn

out to be quite small in all cases studied to date.13,19,20

B. Property Matrices near a Conical Intersection. Using
eqs 5 and 7 in eq 3 gives atRx

whereσw, w ) x, z, are Pauli matrices and

For a symmetric matrixB- ) 0, whereas if the operatorAe is
real-valued and antihermitian onlyB- is nonvanishing. ForF
> 0 andzi g 0, eq 11 provides the lowest order term in the
expansionA(R) ) A0(θ) + A1(R) + ... . Its numerical utility
will be considered below. Note that perturbative evaluation of

tan 2ΦA(R) )
2AIJ(R)

AJJ(R) - AII(R)
(2)

AKL(R) ) 〈ΨK(r ; R)|Ae(r ) ΨL(r ; R)〉r (3)

ΨI(r ; R) ) ∑
R)1

NCSF

cR
I (R) ψR(r ; R) (4a)

[H(R) - EI(R)]cI(R) ) 0 (4b)

ψ̃I(r ; R) ) ∑
R)1

NCSF

cR
I (Rx) ψR(r ; R) (5a)

ΨI(r ; R) ) ∑
K)I,J

êK
I (R) ψ̃K(r ; R) + ∑

K*I,J

¥K
I (R) ψ̃K(r ; R)

(5b)

êI(R) = ê0,I(θ) + ê1,I(R) + ... (6a)

¥I(R) = ¥1,I(R) ... (6b)

(ễI,0(θ)

ễJ,0(θ) )) (cosλ(θ)/2 sinλ(θ)/2

-sin λ(θ)/2 cosλ(θ)/2)(êI,0(Rx)

êJ,0(Rx)
) (7)

q(θ) cosλ(θ) ) gx cosθ
q(θ) sin λ(θ) ) hx cosθ + hy sin θ (8a)

q(θ)2 ) gx
2 cos2 θ + (hx cosθ + hy sin θ)2 (8b)

2gτ
IJ(R) ) (cI(Rx) - cJ(Rx))

†∂H(R)
∂τ

(cI(Rx) + cJ(Rx)) (9a)

hτ
IJ(R) ) cI(Rx)

†∂H(R)
∂τ

cJ(Rx) (9b)

f τ
IJ,d(R) ≡ 〈ΨI

d(r ; R)| ∂

∂τ
ΨJ

d(r ;R)〉r
) f τ

IJ(R) + ∂

∂τ
Φ(R) (10)

A(F f 0, θ, zi ) 0) ≡ A0(θ) ) A+I + σx(A
- sin λ +

B+ cosλ + B-) + σz(A
- cosλ - B+ sin λ) (11a)

A( ) (AII(Rx) ( AJJ(Rx))/2 and

B( ) (AIJ(Rx) ( AJI(Rx))/2 (11b)
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A1(R) is not computationally efficient since it requires knowl-
edge of¥1,I(R), which is about as costly to obtain as the solution
to eq 4b.

At Rx, A is diagonalized by a transformation of the form of
eq 1 withΦ(R) ) ΦA,0(θ) given by

so that

where the offset,R, is given by

Equations 12 and 13 fail to defineΦA,0(θ) if both B+ andA-

vanish, that is, if the property operator is degenerate at the
conical intersection.21 While it is possible to construct such
operators, using for example functions of the energy,21 for the
usual property operators, dipole moment, quadrapole moment,
etc., this is not an issue.

Equation 13 is the promised result. AtRx ΦA(R), the
transformation angle that diagonalizes the 2× 2 matrix of an
arbitrary symmetric property operatorAe differs from the
perturbative resultΦ(p1)(θ) ) -λ(θ)/2 by a constant, (R + nπ)/
2. Thus (∂/∂θ)ΦA,0(R) ) (∂/∂θ)Φ(p1)(R) at Rx, and therefore
as noted above the transformation generated byΦA removes
the singularity in the derivative coupling atRx. Again,ΦA,0(θ)
is the leading term in the perturbative expansionΦA(R) )
ΦA,0(θ) + ΦA,1(R) + ... . However, similar rigorous results are
not found at higher order, that is, as one moves away from the
conical intersection. See section II.C.

Equation 13 can be interpreted as follows. From eq 7,Φ(p1)

) -λ(θ)/2 transforms the adiabatic wave functionsΨK(r ; R),
through first order in energy, “back” to the geometry-
independent functionsΨK(r , Rx), K ) I, J . For these
ΨK(r , Rx), A is not diagonal. The goal ofΦA,0, which is the
negative ofλ/2 up to a constant, is to take the adiabatic states
back, for a givenF and zi, to a “fixed” pair of states. However,
for this pair of states,A is required to be diagonal and hence
the additional rotation provided by the nonzero offset.

Note that ifAe is an antihermitian operator,L, then

that is, nearRx, L is approximately a constant independent of
θ. This observation has practical importance. Sign changes
in the off-diagonal matrix elementAIJ at neighboring geometries
may reflect a change in the overall phase of aΨI or a true
change inAIJ . In the vicinity of a conical intersection, the
geometry independence ofL can be used to distinquish between
these two possibilities.

C. The Electric Dipole Operator near the 11A′-21A′
Seam of Conical Intersection in HeH2. To illustrate the results
presented above, the dipole moment operatorµ(r ) ) ∑ier i, is
considered in the vicinity of a point on the 11A′-21A′ seam of
conical intersection in HeH2. Since the two states both have
A′ symmetry only two components ofµ are nonvanishing here,
taken asµx andµy. The configuration interaction (CI) descrip-
tion of the 11A′ and 21A′ states of HeH2 (denotedI and J,
respectively, below) is a second-order CI based on a four-

electron in four-orbital active space and has been described in
detail previously.22

The point of conical intersection considered isRx ) (R )
1.566 18,r ) 3.729 43,γ ) 44.373 00°) (Figure 1) whereR, r,
γ are the standard Jacobi coordinates withr ) R(H-H), R the
distance from He to the center of mass of H2, andγ the angle
between ther andR line segments withγ ) 90° corresponding
to C2V geometries. The R dependence of the quantities in
question will be investigated for circles in theg-h plane (see
Figure 1). Theg-h plane is essential to the analysis since it
contains all the conical part of the potential energy surfaces, so
that, for examplef zi

IJ is not singular atRx. The analysis can be
extended to different values ofzi by using different points of
conical intersection. From the CI wave functions, atRx, for
µx, A- ) 1.725 20,B+ ) 0.215 57 so thatR ) 7.12°, and for
µy, A- ) -0.100 47,B+ ) -0.518 93 so thatR ) 259.04° (or
79.04°). These quantities plusλ(θ) [and q(θ)] suffice to
determineµw,IJ

0 andΦµw,0 for w ) x, y.
Parts a and b of Figure 2, respectively, report 2Φµw, 2Φµw,0,

λ, ∆w ≡ 2Φµw + λ +nπ, fθ and f θ
(p1), andµw,IJ, µw,IJ

0 , and iLzIJ

for w ) x, y andF ) 0.01 a0. HereiLz is thez component of
the real-valued electronic angular momentum operator, an
antihermitian operator. Here and below theIJ superscripts on
f are omitted for notational convenience. These figures evince
the formal results of subsection II.B. Note in Figure 2a thatfθ
andf θ

(p1) are virtually identical reflecting the general result that
taking Φ ) Φ(p1) gives f θ

d ) 0 at Rx. Since∆w(θ), w ) x, y,
is clearly constant, takingΦ ) Φµw also givesf θ

d ) 0 atRx as
required. It should also be emphasized that whileΦµx * Φµy,
(∂/∂θ)[Φµx - Φµy] ) 0 as required since both must yieldf θ

d )
0 at Rx. The transition dipole moment obtained from the CI
wave functions,µw,IJ, and the perturbative result (eq 11),µw,IJ

0

are also virtually indistinquishable, as expected forF ) 0.01 a0
(Figure 2b). Consequently,Φµw ) Φµw0. Finally note in Figure
2b thatiLz,IJ(θ) is approximately independent ofθ. This enables
the relative phase ofΨI andΨJ at neighboring geometries to
be straightforwardedly decided.

Parts a and b of Figure 3, respectively, report 2Φµw, 2Φµw,0,
λ, ∆w ≡ 2Φµw + λ +nπ , fθ and f θ

(p1), andµw,IJ, µw,IJ
0 , andiLzIJ

for w ) x, y andF ) 0.2 a0. Note that (1/F)fθ is approximately
1/20th its value atF ) 0.01. At thisF the agreement between
the results of the perturbative treatment and those obtained from

tan 2ΦA,0(θ) ) - A- sin λ + B+ cosλ
A- cosλ - B+ sin λ

)

- cosR sin λ + sin R cosλ
cosR cosλ - sin R sin λ

) -
sin(R + λ)

cos(R + λ)
(12)

2ΦA,0(θ) + R + λ(θ) ) nπ, n ) 0, (1, ... (13a)

tanR ) B+/A- (13b)

L (F ) 0, θ, zi ) 0) ) σxB
- (14)

Figure 1. Rx ) (1.561 68, 3.729 43, 44.373 00°), center, as well asR
for F ) 0.8 andθ ) -90, 0, 90, 180. Hereθ is measured relative to
the hIJ(Rx).
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the CI wave functions has deteriorated somewhat although it is
surprisingly good, suggesting the preeminence of theθ depen-
dence in characterizingµ. Thus the significant geometry
dependence ofµ in the region of the conical intersection is
readily understood in terms of the perturbative analysis. Using
numerical differentiation (∂/∂θ),Φµw is found to be within(10%
of the exact result,fθ supporting the utility of this property-

based approach for finiteF. Finally note thatiLzIJ exhibits a
largerθ dependence, as expected, but is still useful in assigning
phase ofµw,IJ at neighboring geometries.

III. Summary and Conclusions

It is shown that diagonalizing the matrix ofany symmetric
(real-valued hermitian) electronic property operator, satisfying
only certain limited restrictions, generates an orthogonal trans-
formation that removes all of the singularity of the derivative
coupling at a conical intersection. Hence property-based

Figure 2. (a, top) 2Φµw, w ) x (filled squares),y (filled diamonds)
2Φµw,0, w ) x (open squares),y (open diamonds),∆w, w ) x (pluses),
y (crosses),λ (filled triangles),fθ (open circles) andf θ

(p1) (filled circles)
atF ) 0.01. (b, bottom)µw,IJ, w ) x (filled squares),y (filled diamonds)
µwIJ

0 , w ) x (open squares),y (open diamonds), andiLzIJ (crosses) atF
) 0.01.

Figure 3. (a, top) Same as Figure 2a forF ) 0.2. (b, bottom) Same
as Figure 2a forF ) 0.2.
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diabatizations, as defined in the Introduction, necessarily provide
a potentially viable diabatic basis for states exhibiting conical
intersections. A perturbative estimate of the matrix elements
of the property operator is provided. The analysis is illustrated
using the components of the dipole moment operator in the
vicinity of a point on the 11A′-21A′ seam of conical intersection
in HeH2. As expected, the choice of the (not identically
vanishing) component of the dipole moment function is seen
to be immaterial as far as removing the singularity in the
derivative coupling is concerned. The analysis provides a clear
explanation for the rapid changes in the transition moment
function in the vicinity of the conical intersection.

The present analysis, which has by design focused on the
singular component of the derivative coupling, provides strong
support for the use of this easily implemented approach for
obtaining approximate diabatic states in the immediate vicinity
of a conical intersection. In a future work the present analysis
will be used as part of a more complete numerical study of the
approximate diabatic basis generated by the dipole moment
operator in “tube” surrounding the 11A′-21A′ seam of conical
intersection in H2S.
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