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Smoothness of a molecular propergchieved by diagonalization of the matrix of the corresponding property
operatot-is a convenient and frequently used criterion for the construction of an adiabatic to diabatic state
transformation. The choice of molecular property has been a matter of considerable discussion. When conical
intersections are present, the performance of this approach near that intersection is key since the derivative
coupling in the adiabatic basis is singular there. Thus it is desirable to know, a priori, whether use of a
particular property will remove the singularity. Here it is shown that diagonalizing the mataxysfymmetric
(real-valued hermitian) electronic property operator, satisfying only certain limited restrictions, generates a
transformation that removes all of the singularity of the derivative coupling at the conical intersection. The
result is illustrated by considering the dipole moment operator near a point oh&he2tA’ seam of conical
intersection in Held

cosP(R) sind(R)
—sin®(R) cosP(R)

. Introduction (IP?(r; R))

At a conical intersection, the derivative coupliﬁﬂ(R) = lpg(r; R)
W\ (r; R)|(8/07)Wy(r; R)[J in the adiabatic basispP(r; R), is
singular. Here fi<(r; R) — E(R)]Wi(r; R) = 0, H(r; R) is where the prescription fab(R) is required. The historical lack
the nonrelativistic electronic Hamiltonian,(R) are the elec- of efficient algorithms for the evaluation of the derivative

tronic_ (nuclgar) coordinates, and is an internal nuclear coupling (although this is certainly no longer the cadeas
coordinate discussed further below. In order to solve the nuclear gtimulated considerable interest in methods to determirR)

Schralinger equation quantum mechanically, it is desirable t0 4t avoid evaluation of the derivative couplifgfss”  Of

remove this 5'”9U|a“tngy transfogmlng to a d|adbat|c basis, concern here is the readily implemented and hence popular class

Wi(r; R), for which allf>"(R) = [W(r; R)I(9/0z)Wy(r; R)LJ  of methods that requires smoothness of a molecular propéty.

are small. For this reason interest in the construction of diabatic any of a variety of molecular properties, including a component

states has been, and continues to be, intérise. of the electronic, dipole mome”tP quadrapole momenf, or
Near a conical intersection, the region of interest in this work, orbital angular momentutf'2 operators are used for the

the two-state approximation is appropriate and the transforma-construction of diabatic bases. Very recently a comparative

W (r;R)
Wyr; R)) )

tion to diabatic states is given by study of the global performance of several of these approaches
has been reportétifor the A’ and 2A’ states of HO, which
T Supported by NSF Grant CHE 97-00771. exhibit two seams of conical intersection.
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As the viability of the molecular properties approach depends & and = can be expanded in a power series in displacements
on its ability to remove the singularity in the derivative coupling JR whereR = Ry + JR as follows
at the conical intersection, it is highly desirable to know, a priori,

whether use of a particular property accomplishes this. Al- E(R) = &%0) + EYR) + ... (6a)
though formal discussions of the molecular property based
adiabatic to diabatic state transformation e&iat) analysis of ZR)=="(R) ... (6b)

the effect on the singularity at a general, that is, where symmetry
plays no role, conical intersection is lacking. This work reports wheré?
a rigorous analysis of this question based on a perturbative
treatment of a general conical intersectibthat extended a é"o(e) cosA(0)/2  sinA(6)/2 g"O(RX)
previous work of Mead* A quite surprising result is obtained. = (7)

%J,0 —qj J,0
It is shown that in the immediate vicinity of a general conical §7(0) sinA(0)/2 cosa(0)/2 [\& (Ry)
intersection of statesandJ the transformation determined by o
the standard property based definition®R) = ®A(R) 1k (R = ok, and
R q(0) cosi(0) = g, cosh
tanzrbA(R)zL() @) 1(0) = h cosf + s

AR) — Ay(R) q(0) sinA(6) = h, cos6 + h, sin6 (8a)

where q(6)> = 9> cos 6 + (h, cos6 + h sin6)>  (8b)
A (R) = W, (r; R)AYr) W, (r; R)[J 3) 6 is the polar angle of a generalized cylindrical coordinate
systemt3 that is,x = p cos6 andy = p sin 6, with origin Ry

andAg(r) is a symmetric operator, differs, by a readily computed and axesk, ¥, andz, i = 3 — N, whereN" is the number

constant, from the perturbatively determined transformation. of internal coordinates. Her& = gY(R/|Ig(RY)II, ¥ =

Since the later transformation rigorously removes all of the hY(R)Y|IhV(R)Y [, h9(RY” = hV(R,) — (hV(R,) X)X

singularity in thef',J(R),13 so must the transformation deter-

mined by & 2P(R) = (E(R) - CRY)TRCR) +CRY)  (9a)
Section Il presents the analysis of transformation 1 Wi{R) 9r x

= ®A(R) near a conical intersection. The practical utility of

the formal treatment is illustrated using the components of the h'J(R) ( X)’ra ( ) J(RX) (9b)

dipole moment operator near a point of tH&1-2'A’ seam of

conical intersection in Held These conical intersections are

particularly relevant since @(R) based exclusively ofi’(R) and thez' are only required to be in the orthogonal complement
has recently been discussed for this systenSection I of thex-y or g-h plane. In egs 8a and 8k, = k"(R,)™W, for
summarizes and concludes. k=g, handw =X, y.

The salient feature of this perturbative analysis concerns the
Il. Theory and Results derivative coupling in the diabatic basis

The W|(r; R) are expanded in a basis
f29R) = [ R 2w iR ]= 19R) + 2o®) (10

NCSF
Py — | .

i R) = OLZ\C“(R) ¥a(r: R) (42) From first-order perturbation theor(R) = ®FY(R) =

—A(0)/2. 1t can be showd? that (1p)(3/00)®PI(R) exactly

where thec'(R) satisfy cancels the only singular part of the deaitive coupling (1/p)
fH(R), atR..1318 The remaining components of the derivative

[H(R) — E(R)]c'(R) =0 (4b) coupling, ;" andf¥;, which are necessarily finite &, turn

out to be qune small in all cases studied to d&tk.2°
In the numerical treatment below thyg, will be configuration B. Property Matrices near a Conical Intersection. Using

state functions (CSF¥) constructed from molecular orbitals €9s 5 and 7 in eq 3 gives B
obtained from a state-averaged multiconfigurational self- )
consistent field procedure. A(p—0,0,Z=0)=A%0) = A"l + 6 (A sini+
A. Wave Functions near a Conical Intersection. Near a + - - _pta
point of conical intersectiorRy, of stated andJ, it is convenient B cosi+B)+ oA cosi—B sinl) (11a)
to replace the CSF basis with an alternative bagi§;; R),

analogous to the crude adiabatic basis of Longt#tgins'’ whereow, W =, , are Pauli matrices and

i s A" = (A(R) £ A,(RY)2 and
W R) = QZ\C&(RX) Y(r; R) (5) B = (A,(R) = A,(R))/2 (11b)
so that For a symmetric matriB~ = 0, whereas if the operatd¥e is
real-valued and antihermitian onB" is nonvanishing. Fop
W (r:R) = (R 9. (r: R) + = (R) 9. (r: R > 0 andZ = 0, eq 11 provides the lowest order term in the
(T R) K;FK( )i R) KZ KR) v R) expansiomA(R) = A%H) + AYR) + .... Its numerical utility

(5b) will be considered below. Note that perturbative evaluation of
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AY(R) is not computationally efficient since it requires knowl- 0=90 He
edge of=1!(R), which is about as costly to obtain as the solution
to eq 4b.
At Ry, A is diagonalized by a transformation of the form of
eq 1 with®(R) = ®A%(9) given by

H l“/—‘%“
He
- i +
tan 2b*%(9) = — A_ sind + B+C(-)S/1 _ i
A cosi — B sind He

6=180

_ cosasini +sinacost _ _ Sin +4) (12) .« P o " coniliicion
cosa cosl — sina sin cos@ + 4) N H
so that
202%0) + o+ A(0) =z, n=0,+1,... (13a) o0 o
where the offsetq, is given by H / iy
tano = BY/A” (13b) CT

Figure 1. R«=(1.561 68, 3.729 43, 44.373 DQcenter, as well aR
Equations 12 and 13 fail to defir@*9(#) if both BT and A~ for pu= 0.8 andf = —90, 0, 90, 180. Her® is measured relative to
vanish, that is, if the property operator is degenerate at the e (R
conical intersectioA While it is possible to construct such . . . . .
operators, using for example functions of the endidpr the elect'ron |n.four-02rb|tal active space and has been described in
usual property operators, dipole moment, quadrapole moment,d€tail previously:
etc., this is not an issue. The point of conical intersection consideredRg = (R =
Equation 13 is the promised result. MRy PAR), the 1.566 18y = 3.729 43y =_44.373 00) (Figure 1) whereR, r,
transformation angle that diagonalizes thex2 matrix of an ¥ are the standard Jacobi coordinates with R(H—H), Rthe
arbitrary symmetric property operato¥ differs from the  distance from He to the center of mass of Eindy the angle
perturbative resuld®l(9) = -A(0)/2 by a constant,o{ + nux)/ between the andR line segments witly = 90° corresponding
2. Thus ¢/00)PAR) = (9/30)dPL(R) at R,, and therefore to Cy, geometries The R dependence of the quantities in
as noted above the transformation generatedbByremoves  question will be investigated for circles in tlieh plane (see
the singularity in the derivative coupling B. Again, ®~9%(6) Figure 1). Theg-h plane is essential to the analysis since it
is the leading term in the perturbative expansidf(R) = contains all the conical part of the potential energy surfaces, so
DAYH) + AYR) + ... However, similar rigorous results are  that, for examplé} is not singular aR,. The analysis can be
not found at higher order, that is, as one moves away from the extended to different values af by using different points of
conical intersection. See section II.C. conical intersection. From the CI wave functions,Ry for
Equation 13 can be interpreted as follows. From ed®®) ux, A~ =1.72520,B* = 0.215 57 so that. = 7.12, and for
= —)()/2 transforms the adiabatic wave functioifg(r; R), ty, A~ = —0.100 478" = —0.518 93 so that = 259.04 (or
through first order in energy, “back” to the geometry- 79.04). These quantities plud(f) [and g@)] suffice to
independent functiondPk(r, Ry, K = I, J . For these determinquf,)wIJ and @0 for w = X, .
Wk(r, Ry), A is not diagonal. The goal abA% which is the Parts a and b of Figure 2, respectively, repeht2 2?0,
negative of/1_/2 up to a_constar_n, is to t_ake the adiabatic states A, Ay = 204 + ) +n, Ty andf(gpl), and w3, #\?V’U, andil
back for agivenp and z,toa "flxed" pair of states. However,  for w=x, yandp = 0.01 a. Hereil, is thez component of
for this pair of statesA is required to be diagonal and hence the real-valued electronic angular momentum operator, an
the additional rotation provided by the nonzero offset. antihermitian operator. Here and below tlesuperscripts on
Note that ifA° is an antihermitian operatok, then f are omitted for notational convenience. These figures evince
the formal results of subsection II.B. Note in Figure 2a that
andf ™ are virtually identical reflecting the general result that
taking ® = ®®D givesf = 0 atR,. SinceA.(d), w =X, Y,
is clearly constant, taking = ®“w also givesfg =0 atRyxas
required. It should also be emphasized that wile = oy,

L(p=0,6,Z=0)=06,B (14)

that is, neaRy, L is approximately a constant independent of
6. This observation has practical importance. Sign changes

in the off-diagonal matrix eleme; at neighboring geometries — . . Cod
may reflect a change in the overall phase o%aor a true (8/06)[@*x — @'] = 0 as required since both must yiefi=
change inA;; . In the vicinity of a conical intersection, the 0 atRy The transition dipole moment obtained from the Cl

geometry independence bfcan be used to distinquish between Wave functionsyu,;, and the perturbative result (eq 1,15

these two possibilities. are also virtually indistinquishable, as expectedder 0.01 g
C. The Electric Dipole Operator near the TA'—2A’ (Figure 2b). Consequentighw = . Finally note in Figure

Seam of Conical Intersection in HeH. Toillustrate the results 2D thatiLzi5(6) is approximately independent 6f This enables

presented above, the dipole moment operato) = e, is the relative phase oV, and W; at neighboring geometries to

considered in the vicinity of a point on théA'—21A’ seam of ~ P€ straightforwardedly decided.

conical intersection in He}d Since the two states both have Parts a and b of Figure 3, respectively, repeb‘2 2 w0,

A’ symmetry only two components gfare nonvanishing here, 4, Ay = 2®# + 4 +nm , fy andfﬁ,pl), and g, Iu\c,)v”, andiL
taken agi anduy. The configuration interaction (Cl) descrip-  for w=x, yandp = 0.2 @. Note that (14)fs is approximately

tion of the ZA’ and 2A’ states of Hekl (denotedl and J, 1/20th its value ap = 0.01. At thisp the agreement between
respectively, below) is a second-order Cl based on a four- the results of the perturbative treatment and those obtained from
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6(deg) Figure 3. (a, top) Same as Figure 2a for= 0.2. (b, bottom) Same
Figure 2. (a, top) b4, w = X (filled squares)y (filled diamonds) as Figure 2a fop = 0.2.
2d#w0, w = x (open squaresy, (open diamonds)Ay, W = x (pluses),

y (crosses) (filled triangles).fy (open circles) and:lg’l_) (filled circles) based approach for finite. Finally note thatL,; exhibits a
atp=0.01. (b, bottom)uy, w = x (filled squares)y (filled diamonds) larger® dependence, as expected, but is still useful in assigning
#Wg (\;Vl= x (open squaresy; (open diamonds), anidl»,; (crosses) ap phase ofuw,; at neighboring geometries.

the Cl wave functions has deteriorated somewhat although itis |
surprisingly good, suggesting the preeminence oftluepen-

dence in characterizing. Thus the significant geometry It is shown that diagonalizing the matrix ahy symmetric
dependence ofi in the region of the conical intersection is (real-valued hermitian) electronic property operator, satisfying
readily understood in terms of the perturbative analysis. Using only certain limited restrictions, generates an orthogonal trans-
numerical differentiationd/a6),®w is found to be withint10% formation that removes all of the singularity of the derivative
of the exact resultfy supporting the utility of this property- coupling at a conical intersection. Hence property-based

Summary and Conclusions



Letters J. Phys. Chem. A, Vol. 102, No. 42, 1998077

diabatizations, as defined in the Introduction, necessarily provide  (2) Sidis, V. Diabatic Potential Energy Surfaces for Charge-Transfer

; ; i ; ; ihiti ; Processes. IrState-Selected and State-to-State lon-Molecule Reaction
a potenu_ally viable dlabatlp baS|s_ for states exhlblt_mg conical Dynamics Part 2, TheoryBaer, M., Ng, C.-Y., Eds.; John Wiley and
intersections. A perturbative estimate of the matrix elements sons: New York, 1992; Vol. 82; pp 73-134.

of the property operator is provided. The analysis is illustrated (3) Domcke, W.; Stock, G. Theory of Ultrafastexcited State Nonadia-
using the components of the dipole moment operator in the batic Processes and Their Spectroscopic Detection in Real TinAedin

PR ; 1__olAl ; : : Chem. Phys.Prigogine, I., Rice, S. A., Eds.; John Wiley and Sons: New
vicinity of a point on the 1A’ —2'A" seam of conical intersection York, 1997; Vol. 100, pp 1-168.

in HeHZ As expected, the C_hOice of the (not i.den.tica"y (4) Lengsfield, B. H.; Yarkony, D. R. Nonadiabatic Interactions
vanishing) component of the dipole moment function is seen Between Potential Energy Surfaces: Theory and ApplicationStéte-

; ; i i T Selected and State to State lon-Molecule Reaction Dynamics: Part 2,
to t.)e !mmatenjdl as far as removing the smgula_nty in the Theory Baer, M., Ng, C.-Y., Eds.; John Wiley and Sons: New York, 1992;
derivative coupling is concerned. The analysis provides a clear | g2 pp 1-71.

explanation for the rapid changes in the transition moment  (5) Pacher, T.; Cederbaum, L. S.;juel, H.J. Chem. Phys1989
function in the vicinity of the conical intersection. 95, 6668.

; ; ; (6) Pacher, T.; Mead, C. A.; Cederbaum, L. S’;pigel, H.J. Chem.
The present analysis, which has by design focused on thePhys.lQSg 91, 7057,

singular component of the derivative coupling, provides strong (7) Pacher, T.; Cederbaum, L. S.*fmel, H.Adv. Chem. Phys1993
support for the use of this easily implemented approach for 84, 293.

obtaining approximate diabatic states in the immediate vicinity (8) Macas, A.; Riera, AJ. Phys. B1978 11, L489-1492.

; ; : : (9) Werner, H. J.; Meyer, WJ. Chem. Phys1981, 74, 5802-5807.
of a conical intersection. In a future work the present analysis (10) Petrongolo, C.: Hirsch, G.: Buenker, R.Mol. Phys. 1990 70,

will be used as part of a more complete numerical study of the g5
approximate diabatic basis generated by the dipole moment (11) Dobbyn, A. J.; Knowles, P. Mol. Phys.1997 91, 1107-1123.
operator in “tube” surrounding the?/A'—2IA" seam of conical (12) Alexander, M.J. Chem. Phys1993 99, 6014-6026.
intersection in HS (13) Yarkony, D. RJ. Phys. Chem. A997, 101, 4263-4270.
' (14) Mead, C. AJ. Chem. Phys1983 78, 807—814.

(15) Sadygov, R. G.; Yarkony, D. R. Chem. Phy4998 109, 20—25.
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